A remark on von Neumann - Wigner type potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys. A: Math. Gen. 29 L581
(http://iopscience.iop.org/0305-4470/29/22/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:04

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A remark on von Neumann-Wigner type potentials

A A Stahlhofen
Max-Planck-Institut Metallforschung, Institut für Physik, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
and
Max-Planck-Arbeitsgruppe 'Nichtklassische Strahlung', Rudower Chaussee 5, Gebäude 10.16, D-12484 Berlin, Germany

Received 23 August 1996

Abstract

A general formulation of the modulation function approach to von Neumann-Wigner type potentials is given covering recent discussions of such potentials as special cases.

The experimental verification of bound states in the continuum described by a local potential in the one-particle one-channel Schrödinger equation [1] has revived interest in von Neumann-Wigner type potentials [2] with embedded eigenvalues. Recent discussions of such long-ranged oscillating potentials, constructed on trivial as well as nontrivial background, were based on supersymmetric quantum mechanics [3], Darboux transformations [4], the Gel'fand-Levitan formalism [5] or a special modulation function [6].

An extension of the modulation function approach covering the techniques used in the aforementioned approaches is given below; special cases are identified and commented on. (A discussion of examples and suggestions for applications will be presented elsewhere).

Let us consider the radial s-wave Schrödinger equation reading (in simplified units)

$$
\begin{equation*}
-\varphi^{\prime \prime}(r)+V_{0}(r) \varphi(r)=k^{2} \varphi(r) \tag{1}
\end{equation*}
$$

with general boundary condition (ρ real)

$$
\begin{equation*}
\sin \rho \varphi(0)+\cos \rho \varphi^{\prime}(0)=0 \tag{2}
\end{equation*}
$$

Let $\varphi_{0}(r)$ be a solution of (1) for a given background potential $V_{0}(r)$ corresponding to $k^{2}=k_{0}^{2}$ and introduce a new function $\phi(r)$ via

$$
\begin{equation*}
\phi(r):=\frac{\varphi_{0}(r)}{f(r)} . \tag{3}
\end{equation*}
$$

This modulation of $\varphi_{0}(r)$ by a free function $f(r)$-subject only to the condition of square integrability (and exclusion of singularities in the potential defined below)—defines a solution $\phi(r)$ of the Schrödinger equation (1) with the new potential

$$
\begin{equation*}
V(r)=V_{0}(r)-2(\ln (f(r)))^{\prime \prime}+\frac{f^{\prime \prime}(r)}{f(r)}-2 \frac{f^{\prime}(r) \varphi_{0}^{\prime}(r)}{f(r) \varphi_{0}(r)} \tag{4}
\end{equation*}
$$

The ansatz $\phi(r)=\varphi_{0}(r) f(r)$ made in [6] is completely equivalent to (3) which is technically more convenient.

Following an idea of [7], the modulating function $f(r)$ is now chosen as

$$
\begin{equation*}
f(r)=\left(A+\left(B \int_{0}^{r} \varphi_{0}(y)^{2} \mathrm{~d} y\right)^{m}\right)^{n} \tag{5}
\end{equation*}
$$

where $\varphi_{0}(r)$ is again a solution of (1) not restricted to be an eigenfunction of (1); A, B are free adjustable parameters.

We now focus on the special case $V_{0}(r):=0$ with $\left(k_{0}^{2}=\kappa^{2}, \rho=\pi / 2\right)$

$$
\begin{equation*}
\varphi_{0}(r)=\frac{1}{\kappa} \sin (\kappa r) \tag{6}
\end{equation*}
$$

for simplicity; for a first generalization to angular momentum $l \neq 0$ the corresponding spherical Bessel functions have to be used. With the abreviation $s(r):=\left(B \int_{0}^{r} \varphi_{0}^{2}(y) \mathrm{d} y\right)^{m}$, the potential (4) resulting from the choice (5) can be written as

$$
\begin{align*}
V(r)=- & \frac{n m s(r)^{m}\left(\left(s^{\prime}\right)^{2}(r)(A m-A)-\left(s^{\prime}\right)^{2}(r) s(r)^{m}(1+n m)\right)}{s(r)^{2}\left(A+s(r)^{2 m}\right)} \\
& -\frac{A n m s(r)^{m+1} s^{\prime \prime}(r)+n m s(r)^{2 m+1} s^{\prime \prime}(r)}{s(r)^{2}\left(A+s(r)^{2 m}\right)}-\frac{2 n m s(r)^{m} s^{\prime}(r)}{s(r)\left(A+s(r)^{m}\right)} \cot (\kappa r) \tag{7}
\end{align*}
$$

Depending on the choice of constants A, B and powers n, m it is now straightforward to recover from (3), (5) and (7) previous discussions of von Neumann-Wigner potentials:
(i) For $n:=2, m:=1$ and $B:=4 \kappa^{3}$ with arbitrary $A:=a^{2}$ (and real a) one recognizes immediately the original strategy of [2];
(ii) For $n=m:=1, A=1$ and real B fixed by requiring square integrability of $\phi(r)$ in
(3) the results are equivalent to those of the so-called double commutation formalism [8] realized either as Darboux transformations [4], supersymmetric quantum mechanics [3] or as factorization procedure;
(iii) For $n=m:=1, B:=1$ and free real A (to be identified with the normalization constant of φ_{0}) one obtains the ansatz of the Gel'fand-Levitan formalism [5].

The double commutation and the equivalent Gel'fand-Levitan ansatz both reduce (4) to the well known form $\left(V_{0}(r)=0\right)$

$$
\begin{equation*}
V(r)=-2(\ln (f(r)))^{\prime \prime} . \tag{8}
\end{equation*}
$$

They can be iterated to handle potentials with $n \geqslant 1$ embedded eigenvalues and give the scattering solution as

$$
\begin{equation*}
\phi(r, k)=\varphi(r, k)-\frac{\varphi_{0}(r) \int_{0}^{r} \varphi_{0}(y) \phi(y, k) \mathrm{d} y}{f(r)} \tag{9}
\end{equation*}
$$

where $\varphi(r, k)$ is the scattering solution of (1). These formalisms do not allow us to vary the strength (coupling constant) of the potential once all functions/constants are chosen but contain by construction a free parameter which can be related to the physical parameters of the system.

The choice

$$
\begin{equation*}
f(r)=A \exp \left(a \int_{0}^{r} \frac{\sin ^{2} \kappa z}{z^{\beta}} \mathrm{d} z\right) \tag{10}
\end{equation*}
$$

for the modulating function (with constant a and $0<\beta \leqslant 1$) discussed in [6] overcomes the difficulty of having a fixed coupling constant by the parameter a as a multiplicative factor in the potential. There are two remarks to be made here:
(i) The ansatz (10) originated in fact in [9], and has been employed in potentials with
embedded eigenvalues in [10] (chapter four). All results presented in [6] can be obtained from those in [10] by implementing in [10] the changes

$$
\begin{align*}
& \phi_{0}(x)=\cos \kappa x \rightarrow \chi(r)=\frac{1}{\kappa} \sin \kappa r \tag{11}\\
& g(x) \phi_{0}(x)=\frac{a \cos ^{2} \kappa x}{x^{\beta}} \rightarrow C(r)=\frac{a \sin ^{2} \kappa r}{r^{\beta}}
\end{align*}
$$

due to different boundary conditions in [10] and [6]. The asymptotics of the resulting potentials do not depend on the boundary conditions; as in the general ansatz before, the asymptotics of the eigenfunction is determined by $f(r)$. (The notations of [10] have been used on the left-hand side of (11) and those of [6] on the right-hand side).
(ii) The discussion of [6] is incomplete for $\beta=1$. For this case, the value of the constant a is subject to a 'resonance condition' [11]: any radial potential with the asymptotics

$$
\begin{equation*}
\lim V(r)=\frac{b \sin c r}{r}+O\left(\frac{1}{r^{2}}\right) \quad r \rightarrow \infty \tag{12}
\end{equation*}
$$

has an embedded eigenvalue at $k^{2}=c^{2} / 4$, iff the resonance condition

$$
\begin{equation*}
\frac{|b|}{|2 c|}>\frac{1}{2} \tag{13}
\end{equation*}
$$

is satisfied. This condition restricts a in [6] to $|a|>1$.
If a von Neumann-Wigner type potential has an embedded eigenvalue, the value of b has drastic consequences for the scattering problem: for $|b / c| \geqslant 2 n, n=1,2, \ldots$ the scattering is trivial (with a Jost-function $F(k)=1$ and vanishing phase shift $\delta(k)=0$); for $|b / c| \neq 2 n$, the Jost-function is singular and scattering is no longer trivial.

For $A:=1$ and $n=m:=1$ an analytical continuation of the double commutation (or the Gel'fand-Levitan) formalism defined above across the continuums edge in the negative eigenvalue regime-requiring for $\varphi_{0}(r)$ a bound state solution in the field of $V_{0}(r)$-shows the equivalence of this formalism to the equivalence problem of [12]. There, the problem of constructing out of the bound state eigenfunctions of background potentials $V_{0}(r)$ new potentials having the same eigenvalues and the same phase shift has been solved analytically; equations (3), (4), (8) and (9) given here agree with the corresponding equations given there (upon correction of a sign error in equation (2.12) of [12]).

The ansatz presented here has for $V_{0}(r)=0$ and $n, m>1$ the advantage of being applicable to the one-dimensional Schrödinger equation defined over the axis while approaches like the double commutation or the Gel'fand-Levitan formalisms lead to singular potentials.

It is a pleasure to thank Professors H D Doebner (Clausthal) and H Paul (Berlin) for useful discussions and the Max-Planck-Arbeitsgruppe 'Nichtklassische Strahlung' for their support.

References

[1] Capasso F et al 1992 Nature 358565
[2] von Neumann J and Wigner E 1929 Physik. Zeitschr. 30465
[3] Pappademos J, Sukhatme U and Pagnamenta A 1993 Phys. Rev. A 483525
[4] Stahlhofen A A 1995 Phys. Rev. A 51934
[5] Meyer-Vernet N 1982 Am. J. Phys. 50354 Weber T A and Pursey D L 1994 Phys. Rev. A 504478
[6] Khelashvili A and Kiknadze N 1996 J. Phys. A: Math. Gen. 293209
[7] Stillinger F H and Herrick D R 1975 Phys. Rev. A 11446
[8] Deift P A 1978 Duke Math. J. 45267
[9] Wintner A 1946 Am. J. Math. 68385
[10] Eastham M S P and Kalf H 1982 Schrödinger type operators with continous spectra Pitman Research Notes in Math. 65 (London: Pitman)
[11] Klaus M 1991 J. Math. Phys. 32163
[12] Jost R and Kohn W 1952 Phys. Rev. 88382

