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LETTER TO THE EDITOR

A remark on von Neumann–Wigner type potentials
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Germany
and
Max-Planck-Arbeitsgruppe ‘Nichtklassische Strahlung’, Rudower Chaussee 5, Gebäude 10.16,
D-12484 Berlin, Germany
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Abstract. A general formulation of the modulation function approach to von Neumann–Wigner
type potentials is given covering recent discussions of such potentials as special cases.

The experimental verification of bound states in the continuum described by a
local potential in the one-particle one-channel Schrödinger equation [1] has revived
interest in von Neumann–Wigner type potentials [2] with embedded eigenvalues. Recent
discussions of such long-ranged oscillating potentials, constructed on trivial as well as
nontrivial background, were based on supersymmetric quantum mechanics [3], Darboux
transformations [4], the Gel’fand–Levitan formalism [5] or a special modulation function
[6].

An extension of the modulation function approach covering the techniques used in the
aforementioned approaches is given below; special cases are identified and commented on.
(A discussion of examples and suggestions for applications will be presented elsewhere).

Let us consider the radial s-wave Schrödinger equation reading (in simplified units)

−ϕ′′(r) + V0(r)ϕ(r) = k2ϕ(r) (1)

with general boundary condition (ρ real)

sinρϕ(0) + cosρϕ′(0) = 0. (2)

Let ϕ0(r) be a solution of (1) for a given background potentialV0(r) corresponding to
k2 = k2

0 and introduce a new functionφ(r) via

φ(r) := ϕ0(r)

f (r)
. (3)

This modulation ofϕ0(r) by a free functionf (r)—subject only to the condition of square
integrability (and exclusion of singularities in the potential defined below)—defines a
solutionφ(r) of the Schr̈odinger equation (1) with the new potential

V (r) = V0(r) − 2(ln(f (r)))′′ + f ′′(r)
f (r)

− 2
f ′(r)ϕ′

0(r)

f (r)ϕ0(r)
. (4)

The ansatzφ(r) = ϕ0(r)f (r) made in [6] is completely equivalent to (3) which is technically
more convenient.
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Following an idea of [7], the modulating functionf (r) is now chosen as

f (r) =
(

A +
(

B

∫ r

0
ϕ0(y)2dy

)m)n

(5)

whereϕ0(r) is again a solution of (1)not restricted to be an eigenfunction of (1);A, B are
free adjustable parameters.

We now focus on the special caseV0(r) := 0 with (k2
0 = κ2, ρ = π/2)

ϕ0(r) = 1

κ
sin(κr) (6)

for simplicity; for a first generalization to angular momentuml 6= 0 the corresponding
spherical Bessel functions have to be used. With the abreviations(r) := (B

∫ r

0 ϕ2
0(y)dy)m,

the potential (4) resulting from the choice (5) can be written as

V (r) = −nms(r)m
(
(s ′)2(r) (Am − A) − (s ′)2(r)s(r)m(1 + nm)

)
s(r)2

(
A + s(r)2m

)
−Anms(r)m+1s ′′(r) + nms(r)2m+1s ′′(r)

s(r)2
(
A + s(r)2m

) − 2nms(r)ms ′(r)
s(r) (A + s(r)m)

cot(κr). (7)

Depending on the choice of constantsA, B and powersn, m it is now straightforward
to recover from (3), (5) and (7) previous discussions of von Neumann–Wigner potentials:
(i) For n := 2, m := 1 andB := 4κ3 with arbitrary A := a2 (and reala) one recognizes
immediately the original strategy of [2];
(ii) For n = m := 1, A = 1 and realB fixed by requiring square integrability ofφ(r) in
(3) the results are equivalent to those of the so-called double commutation formalism [8]
realized either as Darboux transformations [4], supersymmetric quantum mechanics [3] or
as factorization procedure;
(iii) For n = m := 1, B := 1 and free realA (to be identified with the normalization
constant ofϕ0) one obtains the ansatz of the Gel’fand–Levitan formalism [5].

The double commutation and the equivalent Gel’fand–Levitan ansatz both reduce (4) to
the well known form (V0(r) = 0)

V (r) = −2(ln(f (r)))′′. (8)

They can be iterated to handle potentials withn > 1 embedded eigenvalues and give the
scattering solution as

φ(r, k) = ϕ(r, k) − ϕ0(r)
∫ r

0 ϕ0(y)φ(y, k)dy

f (r)
(9)

whereϕ(r, k) is the scattering solution of (1). These formalisms do not allow us to vary
the strength (coupling constant) of the potential once all functions/constants are chosen but
contain by construction a free parameter which can be related to the physical parameters of
the system.

The choice

f (r) = A exp

(
a

∫ r

0

sin2 κz

zβ
dz

)
(10)

for the modulating function (with constanta and 0< β 6 1) discussed in [6] overcomes
the difficulty of having a fixed coupling constant by the parametera as a multiplicative
factor in the potential. There are two remarks to be made here:
(i) The ansatz (10) originated in fact in [9], and has been employed in potentials with
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embedded eigenvalues in [10] (chapter four). All results presented in [6] can be obtained
from those in [10] by implementing in [10] the changes

φ0(x) = cosκx → χ(r) = 1

κ
sinκr (11)

g(x)φ0(x) = a cos2 κx

xβ
→ C(r) = a sin2 κr

rβ

due to different boundary conditions in [10] and [6]. The asymptotics of the resulting
potentials do not depend on the boundary conditions; as in the general ansatz before, the
asymptotics of the eigenfunction is determined byf (r). (The notations of [10] have been
used on the left-hand side of (11) and those of [6] on the right-hand side).
(ii) The discussion of [6] is incomplete forβ = 1. For this case, the value of the constant
a is subject to a ‘resonance condition’ [11]: any radial potential with the asymptotics

lim V (r) = b sincr

r
+ O

(
1

r2

)
r → ∞ (12)

has an embedded eigenvalue atk2 = c2/4, iff the resonance condition

|b|
|2c| >

1

2
(13)

is satisfied. This condition restrictsa in [6] to |a| > 1.
If a von Neumann–Wigner type potential has an embedded eigenvalue, the value of

b has drastic consequences for the scattering problem: for|b/c| > 2n, n = 1, 2, ... the
scattering is trivial (with a Jost-functionF(k) = 1 and vanishing phase shiftδ(k) = 0); for
|b/c| 6= 2n, the Jost-function is singular and scattering is no longer trivial.

For A := 1 andn = m := 1 an analytical continuation of the double commutation (or
the Gel’fand–Levitan) formalism defined above across the continuums edge in the negative
eigenvalue regime—requiring forϕ0(r) a bound state solution in the field ofV0(r)—shows
the equivalence of this formalism to the equivalence problem of [12]. There, the problem
of constructing out of the bound state eigenfunctions of background potentialsV0(r) new
potentials having the same eigenvalues and the same phase shift has been solved analytically;
equations (3), (4), (8) and (9) given here agree with the corresponding equations given there
(upon correction of a sign error in equation (2.12) of [12]).

The ansatz presented here has forV0(r) = 0 and n, m > 1 the advantage of
being applicable to the one-dimensional Schrödinger equation defined over the axis while
approaches like the double commutation or the Gel’fand–Levitan formalisms lead to singular
potentials.

It is a pleasure to thank Professors H D Doebner (Clausthal) and H Paul (Berlin) for useful
discussions and the Max-Planck-Arbeitsgruppe ‘Nichtklassische Strahlung’ for their support.
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